Publication

Learning Simple Algorithms from Examples

ArXiv PrePrint


Abstract

We present an approach for learning simple algorithms such as copying, multi-digit addition and single digit multiplication directly from examples. Our framework consists of a set of interfaces, accessed by a controller. Typical interfaces are 1-D tapes or 2-D grids that hold the input and output data. For the controller, we explore a range of neural network-based models which vary in their ability to abstract the underlying algorithm from training instances and generalize to test examples with many thousands of digits. The controller is trained using Q-learning with several enhancements and we show that the bottleneck is in the capabilities of the controller rather than in the search incurred by Q-learning.

Related Publications

All Publications

A hierarchical loss and its problems when classifying non-hierarchically

Cinna Wu, Mark Tygert, Yann LeCun

PLOS ONE - December 3, 2019

Neural Supersampling for Real-time Rendering

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, Anton Kaplanyan

ACM SIGGRAPH - August 17, 2020

CamemBERT: a Tasty French Language Model

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah, Benoît Sagot

ACL - June 21, 2020

Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, Jason Weston

ACL - June 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy