Publication

Large-Scale Simple Question Answering with Memory Networks

ArXiv PrePrint


Abstract

Training large-scale question answering systems is complicated because training sources usually cover a small portion of the range of possible questions. This paper studies the impact of multitask and transfer learning for simple question answering; a setting for which the reasoning required to answer is quite easy, as long as one can retrieve the correct evidence given a question, which can be difficult in large-scale conditions. To this end, we introduce a new dataset of 100k questions that we use in conjunction with existing benchmarks. We conduct our study within the framework of Memory Networks (Weston et al., 2015) because this perspective allows us to eventually scale up to more complex reasoning, and show that Memory Networks can be successfully trained to achieve excellent performance.

Related Publications

All Publications

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild

Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik, Angjoo Kanazawa

ECCV - August 23, 2020

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

Samarth Brahmbhatt, Chengcheng Tang, Christopher D. Twigg, Charles C. Kemp, James Hays

ECCV - August 23, 2020

Learning to Generate Grounded Visual Captions without Localization Supervision

Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira

ECCV - August 24, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy