Kernel Transformer Networks for Compact Spherical Convolution

Conference Computer Vision and Pattern Recognition (CVPR)


Ideally, 360◦ imagery could inherit the deep convolutional neural networks (CNNs) already trained with great success on perspective projection images. However, existing methods to transfer CNNs from perspective to spherical images introduce significant computational costs and/or degradations in accuracy. We present the Kernel Transformer Network (KTN) to efficiently transfer convolution kernels from perspective images to the equirectangular projection of 360◦ images. Given a source CNN for perspective images as input, the KTN produces a function parameterized by a polar angle and kernel as output. Given a novel 360◦ image, that function in turn can compute convolutions for arbitrary layers and kernels as would the source CNN on the corresponding tangent plane projections. Distinct from all existing methods, KTNs allow model transfer: the same model can be applied to different source CNNs with the same base architecture. This enables application to multiple recognition tasks without re-training the KTN. Validating our approach with multiple source CNNs and datasets, we show that KTNs improve the state of the art for spherical convolution. KTNs successfully preserve the source CNN’s accuracy, while offering transferability, scalability to typical image resolutions, and, in many cases, a substantially lower memory footprint.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels

Yi Zhou, Chenglei Wu, Zimo Li, Chen Cao, Yuting Ye, Jason Saragih, Hao Li, Yaser Sheikh

arXiv - July 1, 2020

Passthrough+: Real-time Stereoscopic View Synthesis for Mobile Mixed Reality

Gaurav Chaurasia, Arthur Nieuwoudt, Alexandru-Eugen Ichim, Richard Szeliski, Alexander Sorkine-Hornung

I3D - April 14, 2020

Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation

Edoardo Remelli, Shangchen Han, Sina Honari, Pascal Fua, Robert Wang

CVPR - June 16, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy