Publication

Jointly Optimize Capacity, Latency and Engagement in Large-scale Recommendation Systems

ACM Conference on Recommender Systems (RecSys)


Abstract

As the recommendation systems behind commercial services scale up and apply more and more sophisticated machine learning models, it becomes important to optimize computational cost (capacity) and runtime latency, besides the traditional objective of user engagement. Caching recommended results and reusing them later is a common technique used to reduce capacity and latency. However, the standard caching approach negatively impacts user engagement. To overcome the challenge, this paper presents an approach to optimizing capacity, latency and engagement simultaneously. We propose a smart caching system including a lightweight adjuster model to refresh the cached ranking scores, achieving significant capacity savings without impacting ranking quality. To further optimize latency, we introduce a prefetching strategy which leverages the smart cache. Our production deployment on Facebook Marketplace demonstrates that the approach reduces capacity demand by 50% and p75 end-to-end latency by 35%. While Facebook Marketplace is used as a case study, the approach is applicable to other industrial recommendation systems as well.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

UAI - July 27, 2021

Measuring Data Leakage in Machine-Learning Models with Fisher Information

Awni Hannun, Chuan Guo, Laurens van der Maaten

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

NeurIPS - December 6, 2021

CRYPTEN: Secure Multi-Party Computation Meets Machine Learning

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, Laurens van der Maaten

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy