IR-VIC: Unsupervised Discovery of Sub-goals for Transfer in RL

International Joint Conference on Artificial Intelligence (IJCAI)


We propose a novel framework to identify subgoals useful for exploration in sequential decision making tasks under partial observability. We utilize the variational intrinsic control framework (Gregor, 2016) which maximizes empowerment – the ability to reliably reach a diverse set of states and show how to identify sub-goals as states with high necessary option information through an information theoretic regularizer. Despite being discovered without explicit goal supervision, our subgoals provide better exploration and sample complexity on challenging grid-world navigation tasks compared to supervised counterparts in prior work.

Related Publications

All Publications

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

Journal of Big Data - July 19, 2021

Cumulative deviation of a subpopulation from the full population

Mark Tygert

NeurIPS - July 16, 2021

Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization

Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner

ICML - July 19, 2021

Making Paper Reviewing Robust to Bid Manipulation Attacks

Ruihan Wu, Chuan Guo, Felix Wu, Rahul Kidambi, Laurens van der Maaten, Kilian Q. Weinberger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy