Inverse Path Tracing for Joint Material and Lighting Estimation

Computer Vision and Pattern Recognition (CVPR)


Modern computer vision algorithms have brought significant advancement to 3D geometry reconstruction. However, illumination and material reconstruction remain less studied, with current approaches assuming very simplified models for materials and illumination. We introduce Inverse Path Tracing, a novel approach to jointly estimate the material properties of objects and light sources in indoor scenes by using an invertible light transport simulation. We assume a coarse geometry scan, along with corresponding images and camera poses. The key contribution of this work is an accurate and simultaneous retrieval of light sources and physically based material properties (e.g., diffuse reflectance, specular reflectance, roughness, etc.) for the purpose of editing and re-rendering the scene under new conditions. To this end, we introduce a novel optimization method using a differentiable Monte Carlo renderer that computes derivatives with respect to the estimated unknown illumination and material properties. This enables joint optimization for physically correct light transport and material models using a tailored stochastic gradient descent.

Related Publications

All Publications

CVPR - June 19, 2021

SimPoE: Simulated Character Control for 3D Human Pose Estimation

Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, Jason Saragih

ICLR - May 3, 2021

Support-Set Bottlenecks for Video-Text Representation Learning

Mandela Patrick, Po-Yao Huang, Florian Metze, Andrea Vedaldi, Alexander Hauptmann, Yuki M. Asano, João Henriques

CVPR - June 19, 2021

Pixel Codec Avatars

Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando De la Torre, Yaser Sheikh

CVPR - June 1, 2021

Semi-supervised Synthesis of High-Resolution Editable Textures for 3D Humans

Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, Tony Tung

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy