Instant 3D Photography



We present an algorithm for constructing 3D panoramas from a sequence of aligned color-and-depth image pairs. Such sequences can be conveniently captured using dual lens cell phone cameras that reconstruct depth maps from synchronized stereo image capture. Due to the small baseline and resulting triangulation error the depth maps are considerably degraded and contain low-frequency error, which prevents alignment using simple global transformations. We propose a novel optimization that jointly estimates the camera poses as well as spatially-varying adjustment maps that are applied to deform the depth maps and bring them into good alignment. When fusing the aligned images into a seamless mosaic we utilize a carefully designed data term and the high quality of our depth alignment to achieve two orders of magnitude speedup w.r.t. previous solutions that rely on discrete optimization by removing the need for label smoothness optimization. Our algorithm processes about one input image per second, resulting in an end-to-end runtime of about one minute for mid-sized panoramas. The final 3D panoramas are highly detailed and can be viewed with binocular and head motion parallax in VR.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy