Inside the Social Network’s (Datacenter) Network



Large cloud service providers have invested in increasingly larger datacenters to house the computing infrastructure required to support their services. Accordingly, researchers and industry practitioners alike have focused a great deal of effort designing network fabrics to efficiently interconnect and manage the traffic within these datacenters in performant yet efficient fashions. Unfortunately, datacenter operators are generally reticent to share the actual requirements of their applications, making it challenging to evaluate the practicality of any particular design. Moreover, the limited large-scale workload information available in the literature has, for better or worse, heretofore largely been provided by a single datacenter operator whose use cases may not be widespread. In this work, we report upon the network traffic observed in some of Facebook’s datacenters. While Facebook operates a number of traditional datacenter services like Hadoop, its core Web service and supporting cache infrastructure exhibit a number of behaviors that contrast with those reported in the literature. We report on the contrasting locality, stability, and predictability of network traffic in Facebook’s datacenters, and comment on their implications for network architecture, traffic engineering, and switch design.


Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

OSDI - November 4, 2020

The CacheLib Caching Engine: Design and Experiences at Scale

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, Gregory G. Ganger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy