Publication

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

ArXiv PrePrint


Abstract

Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.

Related Publications

All Publications

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ACM SIGGRAPH - July 19, 2020

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy