Indentation and Bifurcation of Inflated Membranes

Proceedings of the Royal Society A — Mathematical, Physical, and Engineering Sciences


We study pneumatically inflated membranes indented by rigid indenters of different sizes and shapes. When the volume of the inflated membrane is beyond a critical value, a symmetric deformation mode becomes unstable and the system follows a path of asymmetric deformation. This bifurcation is analyzed analytically for a 2D membrane with either a line or plane indenter for which the stable deformation path is determined by computing the total system potential energy of different configurations. An axisymmetric membrane with indenters of different shapes and sizes is further investigated numerically. In this case, a cylindrical indenter can always trigger bifurcation while a small spherical indenter tends to be encapsulated rather than induce an asymmetric deformation mode. This result suggests that the observed bifurcation behavior can be actively tuned and even triggered selectively by tuning indenter shape and size. We also demonstrate the effects of friction and biased bifurcation analytically through the example of a 2D membrane with a line indenter.


Related Publications

All Publications

IEEE WHC - July 6, 2021

Hasti: Haptic and Audio Synthesis for Texture Interactions

Sonny Chan, Chase Tymms, Nicholas Colonnese

The Journal of the Acoustical Society of America - February 4, 2021

Perceptual implications of different Ambisonics-based methods for binaural reverberation

Isaac Engel, Craig Henry, Sebastià V. Amengual Garí, Philip W. Robinson, Lorenzo Picinali

ICASSP - May 13, 2021

Room Impulse Response Interpolation From A Sparse Set Of Measurements Using A Modal Architecture

Orchisama Das, Paul Calamia, Sebastià V. Amengual Garí

IEEE Transactions on Image Processing - August 6, 2021

Subjective and Objective Quality Assessment of 2D and 3D Foveated Video Compression in Virtual Reality

Yize Jin, Meixu Chen, Todd Goodall, Anjul Patney, Alan C. Bovik

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy