Publication

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)


Abstract

Supervised speech enhancement relies on parallel databases of degraded speech signals and their clean reference signals during training. This setting prohibits the use of real-world degraded speech data that may better represent the scenarios where such systems are used. In this paper, we explore methods that enable supervised speech enhancement systems to train on real-world degraded speech data. Specifically, we propose a semi-supervised approach for speech enhancement in which we first train a modified vector-quantized variational autoencoder that solves a source separation task. We then use this trained autoencoder to further train an enhancement network using real-world noisy speech data by computing a triplet-based unsupervised loss function. Experiments show promising results for incorporating real-world data in training speech enhancement systems.

Related Publications

All Publications

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ICML - July 18, 2021

Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor, Theofanis Karaletsos, Thang D. Bui

ICCV - October 11, 2021

Contrast and Classify: Training Robust VQA Models

Yash Kant, Abhinav Moudgil, Dhruv Batra, Devi Parikh, Harsh Agrawal

ICCV - October 10, 2021

Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, Mustafa Mukadam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy