Publication

ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

3D object detection has seen quick progress thanks to advances in deep learning on point clouds. A few recent works have even shown state-of-the-art performance with just point clouds input (e.g. VOTENET). However, point cloud data have inherent limitations. They are sparse, lack color information and often suffer from sensor noise. Images, on the other hand, have high resolution and rich texture. Thus they can complement the 3D geometry provided by point clouds. Yet how to effectively use image information to assist point cloud based detection is still an open question. In this work, we build on top of VOTENET and propose a 3D detection architecture called IMVOTENET specialized for RGB-D scenes. IMVOTENET is based on fusing 2D votes in images and 3D votes in point clouds. Compared to prior work on multi-modal detection, we explicitly extract both geometric and semantic features from the 2D images. We leverage camera parameters to lift these features to 3D. To improve the synergy of 2D-3D feature fusion, we also propose a multi-tower training scheme. We validate our model on the challenging SUN RGB-D dataset, advancing state-of-the-art results by 5.7 mAP. We also provide rich ablation studies to analyze the contribution of each design choice.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

BMVC - November 22, 2021

Mitigating Reverse Engineering Attacks on Local Feature Descriptors

Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

arXiv - April 20, 2021

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto Calandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy