Publication

Improving Panoptic Segmentation at All Scales

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

Crop-based training strategies decouple training resolution from GPU memory consumption, allowing the use of large-capacity panoptic segmentation networks on multi-megapixel images. Using crops, however, can introduce a bias towards truncating or missing large objects. To address this, we propose a novel crop-aware bounding box regression loss (CABB loss), which promotes predictions to be consistent with the visible parts of the cropped objects, while not over-penalizing them for extending outside of the crop. We further introduce a novel data sampling and augmentation strategy which improves generalization across scales by counteracting the imbalanced distribution of object sizes. Combining these two contributions with a carefully designed, top-down panoptic segmentation architecture, we obtain new state-of-the-art results on the challenging Mapillary Vistas (MVD), Indian Driving and Cityscapes datasets, surpassing the previously best approach on MVD by +4.5% PQ and +5.2% mAP.

Supplementary Materials 

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

UAI - July 23, 2021

High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces

David Eriksson, Martin Jankowiak

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy