Publication

Image-Chat: Engaging Grounded Conversations

Association for Computational Linguistics (ACL)


Abstract

To achieve the long-term goal of machines being able to engage humans in conversation, our models should captivate the interest of their speaking partners. Communication grounded in images, whereby a dialogue is conducted based on a given photo, is a setup naturally appealing to humans (Hu et al., 2014). In this work we study large-scale architectures and datasets for this goal. We test a set of neural architectures using state-of-the-art image and text representations, considering various ways to fuse the components. To test such models, we collect a dataset of grounded human-human conversations, where speakers are asked to play roles given a provided emotional mood or style, as the use of such traits is also a key factor in engagingness (Guo et al., 2019). Our dataset, Image-Chat, consists of 202k dialogues over 202k images using 215 possible style traits. Automatic metrics and human evaluations of engagingness show the efficacy of our approach; in particular, we obtain state-of-the-art performance on the existing IGC task, and our best performing model is almost on par with humans on the Image-Chat test set (preferred 47.7% of the time).

Related Publications

All Publications

EACL - April 18, 2021

Co-evolution of language and agents in referential games

Gautier Dagan, Dieuwke Hupkes, Elia Bruni

PPSN - September 2, 2020

Variance Reduction for Better Sampling in Continuous Domains

Laurent Meunier, Carola Doerr, Jeremy Rapin, Olivier Teytaud

ACL - May 2, 2021

MLQA: Evaluating Cross-lingual Extractive Question Answering

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian Riedel, Holger Schwenk

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy