How agents see things: On visual representations in an emergent language game

Empirical Methods in Natural Language Processing (EMNLP)


There is growing interest in the language developed by agents interacting in emergent-communication settings. Earlier studies have focused on the agents’ symbol usage, rather than on their representation of visual input. In this paper, we consider the referential games of Lazaridou et al. (2017), and investigate the representations the agents develop during their evolving interaction. We find that the agents establish successful communication by inducing visual representations that almost perfectly align with each other, but, surprisingly, do not capture the conceptual properties of the objects depicted in the input images. We conclude that, if we care about developing language-like communication systems, we must pay more attention to the visual semantics agents associate to the symbols they use.

Related Publications

All Publications

NeurIPS - December 6, 2020

High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization

Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy

Innovative Technology at the Interface of Finance and Operations - March 31, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

Human Interpretability Workshop at ICML - July 17, 2020

Investigating Effects of Saturation in Integrated Gradients

Vivek Miglani, Bilal Alsallakh, Narine Kokhlikyan, Orion Reblitz-Richardson

ICASSP - June 6, 2021

Multi-Channel Speech Enhancement Using Graph Neural Networks

Panagiotis Tzirakis, Anurag Kumar, Jacob Donley

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy