Publication

Holographic Optics for Thin and Lightweight Virtual Reality

ACM SIGGRAPH


Abstract

We present a class of display designs combining holographic optics, directional backlighting, laser illumination, and polarization-based optical folding to achieve thin, lightweight, and high performance near-eye displays for virtual reality. Several design alternatives are proposed, compared, and experimentally validated as prototypes. Using only thin, flat films as optical components, we demonstrate VR displays with thicknesses of less than 9 mm, fields of view of over 90◦ horizontally, and form factors approaching sunglasses. In a benchtop form factor, we also demonstrate a full color display using wavelength-multiplexed holographic lenses that uses laser illumination to provide a large gamut and highly saturated color. We show experimentally that our designs support resolutions expected of modern VR headsets and can scale to human visual acuity limits. Current limitations are identified, and we discuss challenges to obtain full practicality.

Related Publications

All Publications

Compacted CPU/GPU Data Compression via Modified Virtual Address Translation

Larry Seiler, Daqi Lin, Cem Yuksel

High Performance Graphics - August 15, 2020

Numerical simulations of near-field head-related transfer functions: Magnitude verification and validation with laser spark sources

Sebastian T. Prepeliţă, Javier Gómez Bolaños, Ville Pulkki, Lauri Savioja, Ravish Mehra

Journal of the Acoustical Society of America - July 10, 2020

A Hybrid Active-Passive Actuation and Control Approach for Kinesthetic Handheld Haptics

Patrick Dills, Nick Colonnese, Priyanshu Agarwal, Michael Zinn

Haptics Symposium - May 12, 2020

Quadratic Approximation of Cubic Curves

Nghia Truong, Cem Yuksel, Larry Seiler

High Performance Graphics - August 15, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy