Hierarchical Text Generation and Planning for Strategic Dialogue

International Conference on Machine Learning (ICML)


End-to-end models for goal-orientated dialogue are challenging to train, because linguistic and strategic aspects are entangled in latent state vectors. We introduce an approach to learning representations of messages in dialogues by maximizing the likelihood of subsequent sentences and actions, which decouples the semantics of the dialogue utterance from its linguistic realization. We then use these latent sentence representations for hierarchical language generation, planning and reinforcement learning. Experiments show that our approach increases the end-task reward achieved by the model, improves the effectiveness of long-term planning using rollouts, and allows self-play reinforcement learning to improve decision making without diverging from human language. Our hierarchical latent-variable model outperforms previous work both linguistically and strategically.

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy