Publication

Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora

Association for Computational Linguistics (ACL)


Abstract

Methods for unsupervised hypernym detection may broadly be categorized according to two paradigms: pattern-based and distributional methods. In this paper, we study the performance of both approaches on several hypernymy tasks and find that simple pattern-based methods consistently outperform distributional methods on common benchmark datasets. Our results show that pattern-based models provide important contextual constraints which are not yet captured in distributional methods.

Related Publications

All Publications

MuDoCo: Corpus for Multidomain Coreference Resolution and Referring Expression Generation

Scott Martin, Shivani Poddar, Kartikeya Upasani

LREC - May 15, 2020

Emerging Cross-lingual Structure in Pretrained Language Models

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettlemoyer, Veselin Stoyanov

ACL - July 9, 2020

Large Scale Audiovisual Learning of Sounds with Weakly Labeled Data

Haytham M. Fayek, Anurag Kumar

IJCAI - July 11, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy