Publication

Hardware Acceleration of Video Quality Metrics

SPIE Optics + Photonics


Abstract

Quality Metrics (QM) provide an objective way to measure perceived video quality. These metrics are very compute intensive and are currently done in software. In this paper, we propose an accelerator that can compute metrics like single scale and multi-scale Structural Similarity Index (SSIM, MS_SSIM) and Visual Information Fidelity (VIF). The proposed accelerator offers an energy efficient solution compared to traditional CPUs. It improves memory bandwidth utilization by computing multiple Quality metrics simultaneously.

Related Publications

All Publications

ESEM - September 23, 2021

Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System

Kinga Bojarczuk, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Mark Lucas, Erik Meijer, Rubmary Rojas, Silvia Sapora

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

TSE - June 29, 2021

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello, Mark Harman

IEEE ICIP - September 19, 2021

Rate Estimation Techniques for Encoder Parallelization

Gaurang Chaudhari, Hsiao-Chiang Chuang, Igor Koba, Hariharan Lalgudi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy