HALE Multidisciplinary Design Optimization Part II: Solar-Powered Flying-Wing Aircraft

AIAA Aviation


A conceptual multidisciplinary framework is developed for the design and analysis of solar-powered, High Altitude Long Endurance (HALE) flight vehicles. Typical design features such as low wing loading and high aspect ratio imply strong inter-disciplinary couplings, in particular, aerodynamics and structures. A MultiDisciplinary Optimization (MDO) framework is therefore required to fully exploit potential couplings that may result in significant weight savings. In order to rapidly and accurately explore the design space, physics-based first principles are emphasized and reliance on historical or empirical data is minimized. In this paper (Part II), we describe how a solar-powered flying-wing configuration may be optimized using a strategy similar to that described in Part I. A key design driver in this case is the suppression of an aeroelastic phenomenon, “Body-Freedom-Flutter”, resulting from strong modal interactions due to wing sweep. Consequently, for the present study, it is shown that resulting designs are stiffness-driven as opposed to the strength-driven characteristic of conventional configurations (tail-stabilized). In addition, potential benefits of recent progress in active flutter suppression technologies are investigated.

Related Publications

All Publications

11-Gbps Broadband Modem-Agnostic Line-of-Sight MIMO Over the Range of 13 km

Yan Yan, Pratheep Bondalapati, Abhishek Tiwari, Chiyun Xia, Andy Cashion, Dawei Zhang, Tobias Tiecke, Qi Tang, Michael Reed, Dudi Shmueli, Hongyu Zhou, Bob Proctor, Joseph Stewart

IEEE GLOBECOM - January 21, 2019

itmlogic: The Irregular Terrain Model by Longley and Rice

Edward J. Oughton, Tom Russell, Joel Johnson, Caglar Yardim, Julius Kusuma

Journal of Open Source Software Blog - July 6, 2020

WES: Agent-based User Interaction Simulation on Real Infrastructure

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers

Genetic Improvement Workshop - April 29, 2020

Aeroelastic Preliminary-Design Optimization of Communication Tower Structures

Vishvas Suryakumar, Paul Varkey, Ben Thomsen, Jack Marriott, David Liu, Abhishek Tiwari

AIAA Scitech - January 6, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy