Publication

HackPPL: A Universal Probabilistic Programming Language

MAPL at PLDI


Abstract

HackPPL is a probabilistic programming language (PPL) built within the Hack programming language. Its universal inference engine allows developers to perform inference across a diverse set of models expressible in arbitrary Hack code. Through language-level extensions and direct integration with developer tools, HackPPL aims to bridge the gap between domain-specific and embedded PPLs. This paper overviews the design and implementation choices for the HackPPL toolchain and presents findings by applying it to a representative problem faced by social media companies.

Related Publications

All Publications

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

FroDO: From Detections to 3D Objects

Martin Rünz, Kejie Li, Meng Tang, Lingni Ma, Chen Kong, Tanner Schmidt, Ian Reid, Lourdes Agapito, Julian Straub, Steven Lovegrove, Richard Newcombe

CVPR - June 13, 2020

Plan2vec: Unsupervised Representation Learning by Latent Plans

Ge Yang, Amy Zhang, Ari Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra

Learning for Dynamics & Control (L4DC) - June 10, 2020

Objective Mismatch in Model-based Reinforcement Learning

Nathan Lambert, Brandon Amos, Omry Yadan, Roberto Calandra

Learning for Dynamics & Control (L4DC) - June 10, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy