Grounded Video Description

Conference Computer Vision and Pattern Recognition (CVPR)


Video description is one of the most challenging problems in vision and language understanding due to the large variability both on the video and language side. Models, hence, typically shortcut the difficulty in recognition and generate plausible sentences that are based on priors but are not necessarily grounded in the video. In this work, we explicitly link the sentence to the evidence in the video by annotating each noun phrase in a sentence with the corresponding bounding box in one of the frames of a video. Our dataset, ActivityNet-Entities, augments the challenging ActivityNet Captions dataset with 158k bounding box annotations, each grounding a noun phrase. This allows training video description models with this data, and importantly, evaluate how grounded or “true” such model are to the video they describe. To generate grounded captions, we propose a novel video description model which is able to exploit these bounding box annotations. We demonstrate the effectiveness of our model on our dataset, but also show how it can be applied to image description on the Flickr30k Entities dataset. We achieve state-of-the-art performance on video description, video paragraph description, and image description and demonstrate our generated sentences are better grounded in the video.


Data set:

Related Publications

All Publications

An Exploration of Embodied Visual Exploration

Santhosh K. Ramakrishnan, Dinesh Jayaraman, Kristen Grauman

arXiv - August 21, 2020

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier

L4DC - June 10, 2020

Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets

Patrick Lewis, Pontus Stenetorp, Sebastian Riedel

arXiv - August 5, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy