Publication

GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects

International Conference on Machine Learning (ICML)


Abstract

Mesh models are a promising approach for encoding the structure of 3D objects. Current mesh reconstruction systems predict uniformly distributed vertex locations of a predetermined graph through a series of graph convolutions, leading to compromises with respect to performance or resolution. In this paper, we argue that the graph representation of geometric objects allows for additional structure, which should be leveraged for enhanced reconstruction. Thus, we propose a system which properly benefits from the advantages of the geometric structure of graph-encoded objects by introducing (1) a graph convolutional update preserving vertex information; (2) an adaptive splitting heuristic allowing detail to emerge; and (3) a training objective operating both on the local surfaces defined by vertices as well as the global structure defined by the mesh. Our proposed method is evaluated on the task of 3D object reconstruction from images with the ShapeNet dataset, where we demonstrate state of the art performance, both visually and numerically, while having far smaller space requirements by generating adaptive meshes.

Related Publications

All Publications

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

Epipolar Transformers

Yihui He, Rui Yan, Katerina Fragkiadaki, Shoou-I Yu

CVPR - June 16, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy