Publication

Generating synthetic social graphs with Darwini

International Conference on Distributed Computing Systems


Abstract

Synthetic graph generators facilitate research in graph algorithms and graph processing systems by providing access to graphs that resemble real social networks while addressing privacy and security concerns. Nevertheless, their practical value lies in their ability to capture important metrics of real graphs, such as degree distribution and clustering properties. Graph generators must also be able to produce such graphs at the scale of real-world industry graphs, that is, hundreds of billions or trillions of edges.

In this paper, we propose Darwini, a graph generator that captures a number of core characteristics of real graphs. Importantly, given a source graph, it can reproduce the degree distribution and, unlike existing approaches, the local clustering coefficient distribution. Furthermore, Darwini maintains a number of metrics, such as graph assortativity, eigenvalues, and others. Comparing Darwini with state-of-the-art generative models, we show that it can reproduce these characteristics more accurately. Finally, we provide an open source implementation of Darwini on the vertex-centric Apache GiraphTM model that can generate synthetic graphs with up to 3 trillion edges.

Related Publications

All Publications

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu

ISCA - May 22, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy