Publication

From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis

IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM)


Abstract

This paper describes some of the challenges and opportunities when deploying static and dynamic analysis at scale, drawing on the authors’ experience with the Infer and Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, impacting billions of people worldwide.

The paper identifies open problems that have yet to receive significant attention from the scientific community, yet which have potential for profound real world impact, formulating these as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects.

Related Publications

All Publications

MLSys - May 19, 2021

TT-Rec: Tensor Train Compression For Deep Learning Recommendation Model Embeddings

Chunxing Yin, Bilge Acun, Xing Liu, Carole-Jean Wu

ICSE - May 21, 2020

Debugging Crashes using Continuous Contrast Set Mining

Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen Fink, Satish Chandra

Machine Learning and Programming Languages (MAPL) Workshop at PLDI - June 22, 2019

Neural Query Expansion for Code Search

Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, Satish Chandra

ICSE - July 22, 2020

Scaffle: Bug Localization on Millions of Files

Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, Satish Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy