Publication

From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis

IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM)


Abstract

This paper describes some of the challenges and opportunities when deploying static and dynamic analysis at scale, drawing on the authors’ experience with the Infer and Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, impacting billions of people worldwide.

The paper identifies open problems that have yet to receive significant attention from the scientific community, yet which have potential for profound real world impact, formulating these as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects.

Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

OSDI - November 4, 2020

The CacheLib Caching Engine: Design and Experiences at Scale

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, Gregory G. Ganger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy