Findings of the First Shared Task on Machine Translation Robustness

Conference on Machine Learning (WMT)


We share the findings of the first shared task on improving robustness of Machine Translation (MT). The task provides a testbed representing challenges facing MT models deployed in the real world, and facilitates new approaches to improve models’ robustness to noisy input and domain mismatch. We focus on two language pairs (English-French and English-Japanese), and the submitted systems are evaluated on a blind test set consisting of noisy comments on Reddit and professionally sourced translations. As a new task, we received 23 submissions by 11 participating teams from universities, companies, national labs, etc. All submitted systems achieved large improvements over baselines, with the best improvement having +22.33 BLEU. We evaluated submissions by both human judgment and automatic evaluation (BLEU), which shows high correlations (Pearson’s r = 0.94 and 0.95). Furthermore, we conducted a qualitative analysis of the submitted systems using compare-mt, which revealed their salient differences in handling challenges in this task. Such analysis provides additional insights when there is occasional disagreement between human judgment and BLEU, e.g. systems better at producing colloquial expressions received higher score from human judgment.

Related Publications

All Publications

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

Invariant Causal Prediction for Block MDPs

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup

ICML - July 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy