Publication

FBOSS: Building Switch Software at Scale

ACM SIGCOMM


Abstract

The conventional software running on network devices, such as switches and routers, is typically vendor-supplied, proprietary and closed-source; as a result, it tends to contain extraneous features that a single operator will not most likely fully utilize. Furthermore, cloud-scale data center networks often times have software and operational requirements that may not be well addressed by the switch vendors.

In this paper, we present our ongoing experiences on overcoming the complexity and scaling issues that we face when designing, developing, deploying and operating an in-house software built to manage and support a set of features required for data center switches of a large scale Internet content provider. We present FBOSS, our own data center switch software, that is designed with the basis on our switch-as-a-server and deploy-early-and-iterate principles. We treat software running on data center switches as any other software services that run on a commodity server. We also build and deploy only a minimal number of features and iterate on it. These principles allow us to rapidly iterate, test, deploy and manage FBOSS at scale. Over the last five years, our experiences show that FBOSS’s design principles allow us to quickly build a stable and scalable network. As evidence, we have successfully grown the number of FBOSS instances running in our data center by over 30x over a two year period.

Related Publications

All Publications

arXiv - July 8, 2021

First-Generation Inference Accelerator Deployment at Facebook

Michael Anderson, Benny Chen, Stephen Chen, Summer Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu, Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin Schatz, Narayanan Sundaram, Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri, Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher, Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam, Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ashwin Poojary, Ye (Charlotte) Qi, Olivier Raginel, Dwarak Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly, Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben Wei, Alex Xiao, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, Vijay Rao

IEEE Access Journal (IEEE Access) - August 1, 2021

Coded Machine Unlearning

Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami

FAST - February 23, 2021

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB Experience

Siying Dong, Andrew Kryczka, Yanqin Jin, Michael Stumm

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy