Publication

Fast Depth Densification for Occlusion-aware Augmented Reality

SIGGRAPH Asia


Abstract

Current AR systems only track sparse geometric features but do not compute depth for all pixels. For this reason, most AR effects are pure overlays that can never be occluded by real objects. We present a novel algorithm that propagates sparse depth to every pixel in near realtime. The produced depth maps are spatio-temporally smooth but exhibit sharp discontinuities at depth edges. This enables AR effects that can fully interact with and be occluded by the real scene. Our algorithm uses a video and a sparse SLAM reconstruction as input. It starts by estimating soft depth edges from the gradient of optical flow fields. Because optical flow is unreliable near occlusions we compute forward and backward flow fields and fuse the resulting depth edges using a novel reliability measure. We then localize the depth edges by thinning and aligning them with image edges. Finally, we optimize the propagated depth smoothly but encourage discontinuities at the recovered depth edges. We present results for numerous real-world examples and demonstrate the effectiveness for several occlusion-aware AR video effects. To quantitatively evaluate our algorithm we characterize the properties that make depth maps desirable for AR applications, and present novel evaluation metrics that capture how well these are satisfied. Our results compare favorably to a set of competitive baseline algorithms in this context.

Related Publications

All Publications

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - December 4, 2020

Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases

Senthil Purushwalkam, Abhinav Gupta

ICSE - November 23, 2020

Predictive Test Selection

Mateusz Machalica, Alex Samylkin, Meredith Porth, Satish Chandra

3DV - November 25, 2020

MonoClothCap: Towards Temporally Coherent Clothing Capture from Monocular RGB Video

Donglai Xiang, Fabian Prada, Chenglei Wu, Jessica Hodgins

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy