Fast Database Restarts at Facebook

ACM Special Interest Group on Management of Data (SIGMOD)


Facebook engineers query multiple databases to monitor and analyze Facebook products and services. The fastest of these databases is Scuba, which achieves subsecond query response time by storing all of its data in memory across hundreds of servers. We are continually improving the code for Scuba and would like to push new software releases at least once a week. However, restarting a Scuba machine clears its memory. Recovering all of its data from disk — about 120 GB per machine — takes 2.5-3 hours to read and format the data per machine. Even 10 minutes is a long downtime for the critical applications that rely on Scuba, such as detecting user-facing errors. Restarting only 2% of the servers at a time mitigates the amount of unavailable data, but prolongs the restart duration to about 12 hours, during which users see only partial query results and one engineer needs to monitor the servers carefully. We need a faster, less engineer intensive, solution to enable frequent software upgrades.

In this paper, we show that using shared memory provides a simple, effective, fast, solution to upgrading servers. Our key observation is that we can decouple the memory lifetime from the process lifetime. When we shutdown a server for a planned upgrade, we know that the memory state is valid (unlike when a server shuts down unexpectedly). We can therefore use shared memory to preserve memory state from the old server process to the new process. Our solution does not increase the server memory footprint and allows recovery at memory speeds, about 2-3 minutes per server. This solution maximizes uptime and availability, which has led to much faster and more frequent rollouts of new features and improvements. Furthermore, this technique can be applied to the in-memory state of any database, even if the memory contains a cache of a much larger disk-resident data set, as in most databases.

Related Publications

All Publications

Eliminating Bugs with Dependent Haskell (Experience Report)

Noam Zilberstein

Haskell Symposium - August 27, 2020

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu

ISCA - May 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy