Fast Convolutional Nets With fbfft: A GPU Performance Evaluation

International Conference on Learning Representations, 2015


We examine the performance profile of Convolutional Neural Network training on the current generation of NVIDIA Graphics Processing Units. We introduce two new Fast Fourier Transform convolution implementations: one based on NVIDIA’s cuFFT library, and another based on a Facebook authored FFT implementation, fbfft, that provides significant speedups over cuFFT (over 1.5x) for whole CNNs. Both of these convolution implementations are available in open source, and are faster than NVIDIA’s cuDNN implementation for many common convolutional layers (up to 23.5x for some synthetic kernel configurations). We discuss different performance regimes of convolutions, comparing areas where straightforward time domain convolutions outperform Fourier frequency domain convolutions. Details on algorithmic applications of NVIDIA GPU hardware specifics in the implementation of fbfft are also provided.

Related Publications

All Publications

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ICML - July 18, 2021

Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor, Theofanis Karaletsos, Thang D. Bui

ICCV - October 11, 2021

Contrast and Classify: Training Robust VQA Models

Yash Kant, Abhinav Moudgil, Dhruv Batra, Devi Parikh, Harsh Agrawal

ICCV - October 10, 2021

Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, Mustafa Mukadam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy