Publication

FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ

Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (AACL)


Abstract

We introduce FAIRSEQ S2T, a FAIRSEQ (Ott et al., 2019) extension for speech-to-text (S2T) modeling tasks such as end-to-end speech recognition and speech-to-text translation. It follows FAIRSEQ’s careful design for scalability and extensibility. We provide end-to-end workflows from data pre-processing, model training to offline (online) inference. We implement state-of-the-art RNN-based as well as Transformer-based models and open-source detailed training recipes. FAIRSEQ’s machine translation models and language models can be seamlessly integrated into S2T workflows for multi-task learning or transfer learning. FAIRSEQ S2T documentation and examples are available at https: //github.com/pytorch/fairseq/tree/ master/examples/speech_to_text.

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy