Publication

Extreme Relative Pose Estimation for RGB-D Scans via Scene Completion

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

Estimating the relative rigid pose between two RGB-D scans of the same underlying environment is a fundamental problem in computer vision, robotics, and computer graphics. Most existing approaches allow only limited relative pose changes since they require considerable overlap between the input scans. We introduce a novel approach that extends the scope to extreme relative poses, with little or even no overlap between the input scans. The key idea is to infer more complete scene information about the underlying environment and match on the completed scans. In particular, instead of only performing scene completion from each individual scan, our approach alternates between relative pose estimation and scene completion. This allows us to perform scene completion by utilizing information from both input scans at late iterations, resulting in better results for both scene completion and relative pose estimation. Experimental results on benchmark datasets show that our approach leads to considerable improvements over state-of-the-art approaches for relative pose estimation. In particular, our approach provides encouraging relative pose estimates even between non-overlapping scans.

Related Publications

All Publications

Towards Generalization Across Depth for Monocular 3D Object Detection

Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa Ricci, Peter Kontschieder

ECCV - August 22, 2020

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, Yubin Kuang

ECCV - August 23, 2020

TexMesh: Reconstructing Detailed Human Texture and Geometry from RGB-D Video

Tiancheng Zhi, Christoph Lassner, Tony Tung, Carsten Stoll, Srinivasa G. Narasimhan, Minh Vo

ECCV - August 21, 2020

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy