February 7, 2017

Exploring Normalization in Deep Residual Networks with Concatenated Rectified Linear Units

AAAI-17

By: Wenling Shang, Justin Chiu, Kihyuk Sohn

Abstract

Deep Residual Networks (ResNets) have recently achieved state-of-the-art results on many challenging computer vision tasks. In this work we analyze the role of Batch Normalization (BatchNorm) layers on ResNets in the hope of improving the current architecture and better incorporating other normalization techniques, such as Normalization Propagation (NormProp), into ResNets. Firstly, we verify that BatchNorm helps distribute representation learning to residual blocks at all layers, as opposed to a plain ResNet without BatchNorm where learning happens mostly in the latter part of the network. We also observe that BatchNorm well regularizes Concatenated ReLU (CReLU) activation scheme on ResNets, whose magnitude of activation grows by preserving both positive and negative responses when going deeper into the network. Secondly, we investigate the use of NormProp as a replacement for BatchNorm in ResNets. Though NormProp theoretically attains the same effect as BatchNorm on generic convolutional neural networks, the identity mapping of ResNets invalidates its theoretical promise and NormProp exhibits a significant performance drop when naively applied. To bridge the gap between BatchNorm and NormProp in ResNets, we propose a simple modification to NormProp and employ the CReLU activation scheme. We experiment on visual object recognition benchmark datasets such as CIFAR- 10/100 and ImageNet and demonstrate that 1) the modified NormProp performs better than the original NormProp but is still not comparable to BatchNorm and 2) CReLU improves the performance of ResNets with or without normalizations.