Publication

Evolution of Development Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB Experience

USENIX Conference on File and Storage Technologies (FAST)


Abstract

RocksDB is a key-value store targeting large-scale distributed systems and optimized for Solid State Drives (SSDs). This paper describes how our priorities in developing RocksDB have evolved over the last eight years. The evolution is the result both of hardware trends and of extensive experience running RocksDB at scale in production at a number of organizations. We describe how and why RocksDB’s resource optimization target migrated from write amplification, to space amplification, to CPU utilization. Lessons from running large-scale applications taught us that resource allocation needs to be managed across different RocksDB instances, that data format needs to remain backward and forward compatible to allow incremental software rollout, and that appropriate support for database replication and backups are needed. Lessons from failure handling taught us that data corruption errors needed to be detected earlier and at every layer of the system.

Related Publications

All Publications

ICML - July 24, 2021

Ditto: Fair and Robust Federated Learning Through Personalization

Tian Li, Shengyuan Hu, Ahmad Beirami, Virginia Smith

International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE) - September 26, 2021

Behavioural and Structural Imitation Models in Facebook’s WW Simulation System

John Ahlgren, Kinga Bojarczuk, Inna Dvortsova, Mark Harman, Rayan Hatout, Maria Lomeli, Erik Meijer, Silvia Sapora

ESEM - September 23, 2021

Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System

Kinga Bojarczuk, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Mark Lucas, Erik Meijer, Rubmary Rojas, Silvia Sapora

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy