Publication

Engineering Egress with Edge Fabric: Steering Oceans of Content to the World

ACM SIGCOMM


Abstract

Large content providers build points of presence around the world, each connected to tens or hundreds of networks. Ideally, this connectivity lets providers better serve users, but providers cannot obtain enough capacity on some preferred peering paths to handle peak traffic demands. These capacity constraints, coupled with volatile traffic and performance and the limitations of the 20 year old BGP protocol, make it difficult to best use this connectivity.

We present Edge Fabric, an SDN-based system we built and deployed to tackle these challenges for Facebook, which serves over two billion users from dozens of points of presence on six continents. We provide the first public details on the connectivity of a provider of this scale, including opportunities and challenges. We describe how Edge Fabric operates in near real-time to avoid congesting links at the edge of Facebook’s network. Our evaluation on production traffic worldwide demonstrates that Edge Fabric efficiently uses interconnections without congesting them and degrading performance.We also present real-time performance measurements of available routes and investigate incorporating them into routing decisions. We relate challenges, solutions, and lessons from four years of operating and evolving Edge Fabric.

Related Publications

All Publications

arXiv - July 8, 2021

First-Generation Inference Accelerator Deployment at Facebook

Michael Anderson, Benny Chen, Stephen Chen, Summer Deng, Jordan Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee, Jason Liang, Haixin Liu, Yinghai Lu, Jack Montgomery, Arun Moorthy, Satish Nadathur, Sam Naghshineh, Avinash Nayak, Jongsoo Park, Chris Petersen, Martin Schatz, Narayanan Sundaram, Bangsheng Tang, Peter Tang, Amy Yang, Jiecao Yu, Hector Yuen, Ying Zhang, Aravind Anbudurai, Vandana Balan, Harsha Bojja, Joe Boyd, Matthew Breitbach, Claudio Caldato, Anna Calvo, Garret Catron, Sneh Chandwani, Panos Christeas, Brad Cottel, Brian Coutinho, Arun Dalli, Abhishek Dhanotia, Oniel Duncan, Roman Dzhabarov, Simon Elmir, Chunli Fu, Wenyin Fu, Michael Fulthorp, Adi Gangidi, Nick Gibson, Sean Gordon, Beatriz Padilla Hernandez, Daniel Ho, Yu-Cheng Huang, Olof Johansson, Shishir Juluri, Shobhit Kanaujia, Manali Kesarkar, Jonathan Killinger, Ben Kim, Rohan Kulkarni, Meghan Lele, Huayu Li, Huamin Li, Yueming Li, Cynthia Liu, Jerry Liu, Bert Maher, Chandra Mallipedi, Seema Mangla, Kiran Kumar Matam, Jubin Mehta, Shobhit Mehta, Christopher Mitchell, Bharath Muthiah, Nitin Nagarkatte, Ashwin Narasimha, Bernard Nguyen, Thiara Ortiz, Soumya Padmanabha, Deng Pan, Ashwin Poojary, Ye (Charlotte) Qi, Olivier Raginel, Dwarak Rajagopal, Tristan Rice, Craig Ross, Nadav Rotem, Scott Russ, Kushal Shah, Baohua Shan, Hao Shen, Pavan Shetty, Krish Skandakumaran, Kutta Srinivasan, Roshan Sumbaly, Michael Tauberg, Mor Tzur, Hao Wang, Man Wang, Ben Wei, Alex Xiao, Chenyu Xu, Martin Yang, Kai Zhang, Ruoxi Zhang, Ming Zhao, Whitney Zhao, Rui Zhu, Lin Qiao, Misha Smelyanskiy, Bill Jia, Vijay Rao

OFC - July 9, 2021

BOW: First Real-World Demonstration of a Bayesian Optimization System for Wavelength Reconfiguration

Zhizhen Zhong, Manya Ghobadi, Maximilian Balandat, Sanjeevkumar Katti, Abbas Kazerouni, Jonathan Leach, Mark McKillop, Ying Zhang

IEEE Access Journal (IEEE Access) - August 1, 2021

Coded Machine Unlearning

Nasser Aldaghri, Hessam Mahdavifar, Ahmad Beirami

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy