Energy-Optimized Trajectory Planning for High Altitude Long Endurance (HALE) Aircraft


This paper outlines the energy-optimized trajectory planning problem for high altitude, long endurance (HALE) aircraft and explores both offline and online optimization techniques to address it. The goal is to find the optimal state and input trajectories for the solar-powered airplane, with input and nonlinear state constraints, which maximize net battery and gravitational potential energy storage. Solutions to the energy-optimal trajectory planning problem, using a six degree-of-freedom model of the nonlinear HALE aircraft dynamics, are computed using both an interior point optimization technique and a bounded nonlinear simplex search algorithm. The optimal trajectories, computed offline, are utilized to train an adaptive neuro-fuzzy inference system (ANFIS) which can be implemented on the flight control computer for online, in-flight trajectory planning. Simulation results show up to 15%more energy storage compared to a baseline parametrically-optimized trajectory.

Related Publications

All Publications

POPL - January 16, 2022

Concurrent Incorrectness Separation Logic

Azalea Raad, Josh Berdine, Derek Dreyer, Peter O'Hearn

HOTI - November 1, 2021

Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 case-study with TCP/IP transport

Saeed Rashidi, Pallavi Shurpali, Srinivas Sridharan, Naader Hassani, Dheevatsa Mudigere, Krishnakumar Nair, Misha Smelyanskiy, Tushar Krishna

ICSE - November 17, 2021

Automatic Testing and Improvement of Machine Translation

Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, Lu Zhang

ACM OOPSLA - October 22, 2021

VESPA: Static Profiling for Binary Optimization

Angélica Aparecida Moreira, Guilherme Ottoni, Fernando Magno Quintão Pereira

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy