Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

Learning for Dynamics and Control (L4DC)


The recursive Newton-Euler Algorithm (RNEA) is a popular technique for computing the dynamics of robots. RNEA can be framed as a differentiable computational graph, enabling the dynamics parameters of the robot to be learned from data via modern auto-differentiation toolboxes. However, the dynamics parameters learned in this manner can be physically implausible. In this work, we incorporate physical constraints in the learning by adding structure to the learned parameters. This results in a framework that can learn physically plausible dynamics via gradient descent, improving the training speed as well as generalization of the learned dynamics models. We evaluate our method on real-time inverse dynamics control tasks on a 7 degree of freedom robot arm, both in simulation and on the real robot. Our experiments study a spectrum of structure added to the parameters of the differentiable RNEA algorithm, and compare their performance and generalization.

Related Publications

All Publications

Unsupervised Translation of Programming Languages

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, Guillaume Lample

NeurIPS - December 1, 2020

Learning Reasoning Strategies in End-to-End Differentiable Proving

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, Tim Rocktäschel

ICML - August 13, 2020

Voice Separation with an Unknown Number of Multiple Speakers

Eliya Nachmani, Yossi Adi, Lior Wolf

ICML - October 1, 2020

Synthetic Defocus and Look-Ahead Autofocus for Casual Videography

Xuaner Zhang, Kevin Matzen, Vivien Nguyen, Dillon Yao, You Zhang, Ren Ng

SIGGRAPH - July 28, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy