ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games

Neural Information Processing Systems (NIPS)


In this paper, we propose ELF, an Extensive, Lightweight and Flexible platform for fundamental reinforcement learning research. Using ELF, we implement a highly customizable real-time strategy (RTS) engine with three game environments (Mini-RTS, Capture the Flag and Tower Defense). Mini-RTS, as a miniature version of StarCraft, captures key game dynamics and runs at 40K frame per-second (FPS) per core on a laptop. When coupled with modern reinforcement learning methods, the system can train a full-game bot against built-in AIs end to-end in one day with 6 CPUs and 1 GPU. In addition, our platform is flexible in terms of environment-agent communication topologies, choices of RL methods, changes in game parameters, and can host existing C/C++-based game environments like ALE [4]. Using ELF, we thoroughly explore training parameters and show that a network with Leaky ReLU [17] and Batch Normalization [11] coupled with long-horizon training and progressive curriculum beats the rule-based built-in AI more than 70% of the time in the full game of Mini-RTS. Strong performance is also achieved on the other two games. In game replays, we show our agents learn interesting strategies. ELF, along with its RL platform, is open sourced at

Related Publications

All Publications

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

Invariant Causal Prediction for Block MDPs

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup

ICML - July 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy