Efficient Segmentation: Learning Downsampling Near Semantic Boundaries

International Conference on Computer Vision (ICCV)


Many automated processes such as auto-piloting rely on a good semantic segmentation as a critical component. To speed up performance, it is common to downsample the input frame. However, this comes at the cost of missed small objects and reduced accuracy at semantic boundaries. To address this problem, we propose a new content-adaptive downsampling technique that learns to favor sampling locations near semantic boundaries of target classes. Cost-performance analysis shows that our method consistently outperforms the uniform sampling improving balance between accuracy and computational efficiency. Our adaptive sampling gives segmentation with better quality of boundaries and more reliable support for smaller-size objects.

Related Publications

All Publications

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

ICSA - November 6, 2019

Auralization systems for simulation of augmented reality experiences in virtual environments

Peter Dodds, Sebastià V. Amengual Garí, W. Owen Brimijoin, Philip W. Robinson

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

Journal of the Audio Engineering Society - July 20, 2021

Six-Degrees-of-Freedom Parametric Spatial Audio Based on One Monaural Room Impulse Response

Johannes M. Arend, Sebastià V. Amengual Garí, Carl Schissler, Florian Klein, Philip W. Robinson

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy