Publication

Efficient Large-Scale Multi-Modal Classification

Conference on Artificial Intelligence (AAAI)


Abstract

While the incipient internet was largely text-based, the modern digital world is becoming increasingly multi-modal. Here, we examine multi-modal classification where one modality is discrete, e.g. text, and the other is continuous, e.g. visual representations transferred from a convolutional neural network. In particular, we focus on scenarios where we have to be able to classify large quantities of data quickly. We investigate various methods for performing multi-modal fusion and analyze their trade-offs in terms of classification accuracy and computational efficiency. Our findings indicate that the inclusion of continuous information improves performance over text-only on a range of multi-modal classification tasks, even with simple fusion methods. In addition, we experiment with discretizing the continuous features in order to speed up and simplify the fusion process even further. Our results show that fusion with discretized features outperforms text-only classification, at a fraction of the computational cost of full multimodal fusion, with the additional benefit of improved interpretability.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

AISTATS - November 3, 2020

A single algorithm for both restless and rested rotting bandits

Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy