Publication

Don’t Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering

Computer Vision and Pattern Recognition (CVPR)


Abstract

A number of studies have found that today’s Visual Question Answering (VQA) models are heavily driven by superficial correlations in the training data and lack sufficient image grounding. To encourage development of models geared towards the latter, we propose a new setting for VQA where for every question type, train and test sets have different prior distributions of answers. Specifically, we present new splits of the VQA v1 and VQA v2 datasets, which we call Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively). First, we evaluate several existing VQA models under this new setting and show that their performance degrades significantly compared to the original VQA setting. Second, we propose a novel Grounded Visual Question Answering model (GVQA) that contains inductive biases and restrictions in the architecture specifically designed to prevent the model from ‘cheating’ by primarily relying on priors in the training data. Specifically, GVQA explicitly disentangles the recognition of visual concepts present in the image from the identification of plausible answer space for a given question, enabling the model to more robustly generalize across different distributions of answers. GVQA is built off an existing VQA model – Stacked Attention Networks (SAN). Our experiments demonstrate that GVQA significantly outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it also outperforms more powerful VQA models such as Multimodal Compact Bilinear Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA is more transparent and interpretable than existing VQA models.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy