Do Diffusion Protocols Govern Cascade Growth?

International AAAI Conference on Web and Social Media (ICWSM)


Large cascades can develop in online social networks as people share information with one another. Though simple reshare cascades have been studied extensively, the full range of cascading behaviors on social media is much more diverse. Here we study how diffusion protocols, or the social exchanges that enable information transmission, affect cascade growth, analogous to the way communication protocols define how information is transmitted from one point to another. Studying 98 of the largest information cascades on Facebook, we find a wide range of diffusion protocols – from cascading reshares of images, which use a simple protocol of tapping a single button for propagation, to the ALS Ice Bucket Challenge, whose diffusion protocol involved individuals creating and posting a video, and then nominating specific others to do the same. We find recurring classes of diffusion protocols, and identify two key counterbalancing factors in the construction of these protocols, with implications for a cascade’s growth: the effort required to participate in the cascade, and the social cost of staying on the sidelines. Protocols requiring greater individual effort slow down a cascade’s propagation, while those imposing a greater social cost of not participating increase the cascade’s adoption likelihood. The predictability of transmission also varies with protocol. But regardless of mechanism, the cascades in our analysis all have a similar reproduction number (≈1.8), meaning that lower rates of exposure can be offset with higher per-exposure rates of adoption. Last, we show how a cascade’s structure can not only differentiate these protocols, but also be modeled through branching processes. Together, these findings provide a framework for understanding how a wide variety of information cascades can achieve substantial adoption across a network.

Related Publications

All Publications

Finding the Best k in Core Decomposition: A Time and Space Optimal Solution

Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, Chenyi Zhang

ICDE - April 20, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

Predicting Remediations for Hardware Failures in Large-Scale Datacenters

Fred Lin, Antonio Davoli, Imran Akbar, Sukumar Kalmanje, Leandro Silva, John Stamford, Yanai Golany, Jim Piazza, Sriram Sankar

IEEE/IFIP DSN - June 29, 2020

When Does Trust in Online Social Groups Grow?

Shankar Iyer, Justin Cheng, Nick Brown, Xiuhua Wang

ICWSM - June 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy