Publication

Do Cascades Recur?

WWW 2016


Abstract

Cascades of information-sharing are a primary mechanism by which content reaches its audience on social media, and an active line of research has studied how such cascades, which form as content is reshared from person to person, develop and subside. In this paper, we perform a large-scale analysis of cascades on Facebook over significantly longer time scales, and find that a more complex picture emerges, in which many large cascades recur, exhibiting multiple bursts of popularity with periods of quiescence in between. We characterize recurrence by measuring the time elapsed between bursts, their overlap and proximity in the social network, and the diversity in the demographics of individuals participating in each peak. We discover that content virality, as revealed by its initial popularity, is a main driver of recurrence, with the availability of multiple copies of that content helping to spark new bursts. Still, beyond a certain popularity of content, the rate of recurrence drops as cascades start exhausting the population of interested individuals. We reproduce these observed patterns in a simple model of content recurrence simulated on a real social network. Using only characteristics of a cascade’s initial burst, we demonstrate strong performance in predicting whether it will recur in the future.

Related Publications

All Publications

arXiv - September 23, 2020

Neural Relational Autoregression for High-Resolution COVID-19 Forecasting

Matthew Le, Mark Ibrahim, Levent Sagun, Timothée Lacroix, Maximilian Nickel

ACM SIGIR - July 11, 2021

From Producer Success to Retention: a New Role of Search and Recommendation Systems on Marketplaces

Viet Ha-Thuc, Matthew Wood, Yunli Liu, Jagadeesan Sundaresan

Information and Inference: a Journal of the IMA - January 18, 2021

Secure multiparty computations in floating-point arithmetic

Chuan Guo, Awni Hannun, Brian Knott, Laurens van der Maaten, Mark Tygert, Ruiyu Zhu

NeurIPS - October 22, 2020

Re-Examining Linear Embeddings for High-dimensional Bayesian Optimization

Benjamin Letham, Roberto Calandra, Akshara Rai, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy