Publication

DMC-Net: Generating Discriminative Motion Cues for Fast Compressed Video Action Recognition

Conference Computer Vision and Pattern Recognition (CVPR)


Abstract

Motion has shown to be useful for video understanding, where motion is typically represented by optical flow. However, computing flow from video frames is very time-consuming. Recent works directly leverage the motion vectors and residuals readily available in the compressed video to represent motion at no cost. While this avoids flow computation, it also hurts accuracy since the motion vector is noisy and has substantially reduced resolution, which makes it a less discriminative motion representation. To remedy these issues, we propose a lightweight generator network, which reduces noises in motion vectors and captures fine motion details, achieving a more Discriminative Motion Cue (DMC) representation. Since optical flow is a more accurate motion representation, we train the DMC generator to approximate flow using a reconstruction loss and an adversarial loss, jointly with the downstream action classification task. Extensive evaluations on three action recognition benchmarks (HMDB-51, UCF-101, and a subset of Kinetics) confirm the effectiveness of our method. Our full system, consisting of the generator and the classifier, is coined as DMC-Net which obtains high accuracy close to that of using flow and runs two orders of magnitude faster than using optical flow at inference time.

Related Publications

All Publications

An Exploration of Embodied Visual Exploration

Santhosh K. Ramakrishnan, Dinesh Jayaraman, Kristen Grauman

arXiv - August 21, 2020

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier

L4DC - June 10, 2020

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy