Publication

DistInit: Learning Video Representations Without a Single Labeled Video

International Conference on Computer Vision (ICCV)


Abstract

Video recognition models have progressed significantly over the past few years, evolving from shallow classifiers trained on hand-crafted features to deep spatiotemporal networks. However, labeled video data required to train such models has not been able to keep up with the ever increasing depth and sophistication of these networks. In this work we propose an alternative approach to learning video representations that requires no semantically labeled videos, and instead leverages the years of effort in collecting and labeling large and clean still-image datasets. We do so by using state-of-the-art models pre-trained on image datasets as “teachers” to train video models in a distillation framework. We demonstrate that our method learns truly spatiotemporal features, despite being trained only using supervision from still-image networks. Moreover, it learns good representations across different input modalities, using completely uncurated raw video data sources and with different 2D teacher models. Our method obtains strong transfer performance, outperforming standard techniques for bootstrapping video architectures with image-based models by 16%. We believe that our approach opens up new approaches for learning spatiotemporal representations from unlabeled video data.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy