Publication

Discovering Causal Signals in Images

CVPR 2017


Abstract

This paper establishes the existence of observable footprints that reveal the “causal dispositions” of the object categories appearing in collections of images. We achieve this goal in two steps. First, we take a learning approach to observational causal discovery, and build a classifier that achieves state-of-the-art performance on finding the causal direction between pairs of random variables, given samples from their joint distribution. Second, we use our causal direction classifier to effectively distinguish between features of objects and features of their contexts in collections of static images. Our experiments demonstrate the existence of a relation between the direction of causality and the difference between objects and their contexts, and by the same token, the existence of observable signals that reveal the causal dispositions of objects.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

AISTATS - November 3, 2020

A single algorithm for both restless and rested rotting bandits

Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy