Publication

Dialogue in the Wild: Learning from a Deployed Role-Playing Game with Humans and Bots

ACM International Joint Conference on Natural Language Processing (ACL-IJCNLP)


Abstract

Much of NLP research has focused on crowdsourced static datasets and the supervised learning paradigm of training once and then evaluating test performance. As argued in de Vries et al. (2020), crowdsourced data has the issues of lack of naturalness and relevance to real-world use cases, while the static dataset paradigm does not allow for a model to learn from its experiences of using language (Silver et al., 2013). In contrast, one might hope for machine learning systems that become more useful as they interact with people. In this work, we build and deploy a role-playing game, whereby human players converse with learning agents situated in an open-domain fantasy world. We show that by training models on the conversations they have with humans in the game the models progressively improve, as measured by automatic metrics and online engagement scores. This learning is shown to be more efficient than crowdsourced data when applied to conversations with real users, as well as being far cheaper to collect.

Related Publications

All Publications

NeurIPS - December 5, 2021

Interpretable agent communication from scratch (with a generic visual processor emerging on the side)

Roberto Dessì, Eugene Kharitonov, Marco Baroni

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy