Detecting Large Reshare Cascades in Social Networks

International Conference on World Wide Web


Detecting large reshare cascades is an important problem in online social networks. There are a variety of attempts to model this problem, from using time series analysis methods to stochastic processes. Most of these approaches heavily depend on the underlying network features and use network information to detect the virality of cascades. In most cases, however, getting such detailed network information can be hard or even impossible.

In contrast, in this paper, we propose SansNet, a network agnostic approach instead. Our method can be used to answer two important questions: (1) Will a cascade go viral? and (2) How early can we predict it? We use techniques from survival analysis to build a supervised classifier in the space of survival probabilities and show that the optimal decision boundary is a survival function. A notable feature of our approach is that it does not use any network-based features for the prediction tasks, making it very cheap to implement. Finally, we evaluate our approach on several real-life data sets, including popular social networks like Facebook and Twitter, on metrics like recall, F-measure and breakout coverage. We find that network agnostic SansNet classifier outperforms several non-trivial competitors and baselines which utilize network information.

Related Publications

All Publications

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

TTS Skins: Speaker Conversion via ASR

Adam Polyak, Lior Wolf, Yaniv Taigman

Interspeech - August 9, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy