DensePose: Dense Human Pose Estimation In The Wild

Computer Vision and Pattern Recognition (CVPR)


In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence ‘in the wild’, namely in the presence of background, occlusions and scale variations. We improve our training set’s effectiveness by training an in painting network that can fill in missing ground truth values and report improvements with respect to the best results that would be achievable in the past. We experiment with fully-convolutional networks and region-based models and observe a superiority of the latter. We further improve accuracy through cascading, obtaining a system that delivers highly-accurate results at multiple frames per second on a single GPU. Supplementary materials, data, code, and videos are provided on the project page.

Related Publications

All Publications

Towards Generalization Across Depth for Monocular 3D Object Detection

Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa Ricci, Peter Kontschieder

ECCV - August 22, 2020

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, Yubin Kuang

ECCV - August 23, 2020

TexMesh: Reconstructing Detailed Human Texture and Geometry from RGB-D Video

Tiancheng Zhi, Christoph Lassner, Tony Tung, Carsten Stoll, Srinivasa G. Narasimhan, Minh Vo

ECCV - August 21, 2020

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy