Publication

DensePose: Dense Human Pose Estimation In The Wild

Computer Vision and Pattern Recognition (CVPR)


Abstract

In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence ‘in the wild’, namely in the presence of background, occlusions and scale variations. We improve our training set’s effectiveness by training an in painting network that can fill in missing ground truth values and report improvements with respect to the best results that would be achievable in the past. We experiment with fully-convolutional networks and region-based models and observe a superiority of the latter. We further improve accuracy through cascading, obtaining a system that delivers highly-accurate results at multiple frames per second on a single GPU. Supplementary materials, data, code, and videos are provided on the project page.

Related Publications

All Publications

Plan2vec: Unsupervised Representation Learning by Latent Plans

Ge Yang, Amy Zhang, Ari Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra

Learning for Dynamics & Control (L4DC) - June 10, 2020

Objective Mismatch in Model-based Reinforcement Learning

Nathan Lambert, Brandon Amos, Omry Yadan, Roberto Calandra

Learning for Dynamics & Control (L4DC) - June 10, 2020

EGO-TOPO: Environment Affordances from Egocentric Video

Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, Kristen Grauman

CVPR - June 14, 2020

Listen to Look: Action Recognition by Previewing Audio

Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, Lorenzo Torresani

CVPR - June 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy