Demonstration of a 40Gbps Bi-directional Air-to-Ground Millimeter Wave Communication Link

IEEE International Microwave Symposium (IMS)


We describe the design, development, and field demonstration of a high-throughput E-band communication link between a ground station and a Cessna aircraft flying at an altitude of 7km and a top speed of 463km/h. The link achieved a peak data rate of 40Gbps bi-directional (80Gbps combined simultaneously), and robustly maintained a sustained data rate of 40 Gbps in downlink and 36Gbps in uplink direction for the 12km air-to-ground slanted path. The average power consumption of the flight terminal prototype was measured at 363 Watts in average, and mass at 11.8kg. We also report the results of a test campaign in Quillayute, WA to spot-check the ITU models for rain and cloud attenuation over an air-to-ground link. Using the proven system performance and ITU path loss models, we show that the terminal could be used to provide the maximum bidirectional 40Gbps data rates up to an altitude of 28km and 10Gbps up to 310km. To the best of the authors’ knowledge, the very high capacity (> 10Gbps in each direction) millimeter wave communication link system between a ground station and a fast-moving aerial platform over significant ranges (> 10km slanted range) is a world first.

Related Publications

All Publications

WES: Agent-based User Interaction Simulation on Real Infrastructure

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers

Genetic Improvement Workshop - April 29, 2020

Aeroelastic Preliminary-Design Optimization of Communication Tower Structures

Vishvas Suryakumar, Paul Varkey, Ben Thomsen, Jack Marriott, David Liu, Abhishek Tiwari

AIAA Scitech - January 6, 2020

Gabor Frame-Based Sparsification and Radiation Boundary Conditions for Parabolic Wave Equations

Max Bright, Julius Kusuma, Eric Michielssen

IEEE AP-S/URSI - July 8, 2019

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy